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What kinds of problems are you
trying to solve?

What kinds of models do you work
with?

Do the models have parameters?

If so, what do the parameters do or
represent?



Why do | care?

(And why | think you should, too.)



Aerospace design

Lukaczyk, Palacios, Alonso,
and Constantine (2014)

Ebola transmission models
Diaz, Constantine, Kalmbach, Jones,
and Pankavich (2018)

ﬂ1+h+ﬂs

Integrated hydrologic models
Jefferson, Gilbert, Constantine, and Maxwell (2015)

Automobile design Hypersonic scramjet models

Othmer, Lukaczyk, Constantine, and Alonso (2016) Constantine, Emory, Larsson, and laccarino (2015)

Magnetohydrodynamics models
Glaws, Constantine, Shadid, and Wildey (2017)

Solar cell models
Constantine, Zaharatos, and Campanelli (2015)
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Lithium ion battery model
Constantine and Doostan (2017)



PROPERTIES: TO DO:

Computer model of a physical system APPROXIMATION
Several independent inputs f(x) ~ f(x)
Deterministic

INTEGRATION
Continuous inputs / outputs

P P / f(x) dx

“Smoothness”

OPTIMIZATION

minimize f(x)

fx *



How many dimensions is high dimensions?



Troubles in high dimensions

the information-based complexity (IBC)
notion of tractability

LEZIONI LINCEE

J.E Traub
A.G.Werschulz

Complexity

and Information

ACCADEMIA NAZIONALE DEI LINCEI




REDUCED-ORDER MODELS
or
PARALLEL PROCESSING

Number of parameters Number of model runs  REUERTIE E1E 1 TS T

(the dimension) (at 10 points per dimension) (at 1 second per run)
1 10 10 sec
2 100 ~ 1.6 min
3 1,000 ~ 16 min
4 10,000 ~ 2.7 hours
5 100,000 ~ 1.1 days
6 1,000,000 ~ 1.6 weeks
20 1e20 3 trillion years

(240x age of the universe)



BETTER DESIGNS
or
ADAPTIVE SAMPLING

Number of parameters N[ YT RS T. EIRGT IS Time for parameter study

(the dimension) (at 10 points per dimension) (at 1 second per run)
1 10 10 sec
2 100 ~ 1.6 min
3 1,000 ~ 16 min
4 10,000 ~ 2.7 hours
5 100,000 ~ 1.1 days
6 1,000,000 ~ 1.6 weeks
20 1e20 3 trillion years

(240x age of the universe)



Troubles in high dimensions

volume of a unit ball in m dimensions:

m-ball volume
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When Is “Nearest Neighbor” Meaningful?

Kevin Beyer, Jonathan Goldstein, Raghu Ramakrishnan, and Uri Shaft

CS Dept., University of Wisconsin-Madison
1210 W. Dayton St., Madison, WI 53706

{beyer, jgoldst, raghu, uri}@cs.wisc.edu

Database Theory --- ICDT'99, Springer (1999)
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Fig. 1. Query point and its nearest neighbor.

Fig. 2. Another query point and its nearest neighbor.



When Is “"Nearest Neighbor” Meaningful?
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Structure-exploiting methods

STRUCTURE

Fx) % fulwn) + -

METHODS

Sparse gl‘idS [Bungartz & Griebel (2004)],
HDMR [Sobol (2003)], ANOVA [Hoeffding
(1948)], QMC [Niederreiter (1992)], ...

Separation of variables [Beylkin &
Mohlenkamp (2005)], Tensor-train [Oseledets
(2011)], Adaptive cross approximation
[Bebendorff (2011)], Proper generalized
decomposition [Chinesta et al. (2011)], ...

Compressed sensing [Donoho (2006),
Candes & Wakin (2008)], ...



John W. Tukey

EXPLOR ATORY DATA “Even more understanding is lost
if we consider each thing we can

ANALYS'S do to data only in terms of some
set of very restrictive assumptions

under which that thing is best
possible—assumptions we know

we CANNOT check in practice.”

oo e




The best way to fight the curse is to
reduce the dimension.

But what is dimension reduction?

* physical reasoning
 dimensional analysis [Barrenblatt (1996)]

correlation-based reduction [Jolliffe (2002)]
 global sensitivity analysis [Saltelli et al. (2008)]
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Design a jet nozzle under uncertainty

(DARPA SEQUOIA project)
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Ridge approximations

Where u * n n n
big small

\ /
U! . R™ & R"”

g:R" SR

f(xb 332)

Constantine, Eftekhari, Hokanson, and Ward (2017)



Ridge approximations

205
RIDGE FUNCTIONS
T
f(x) ~ g(U" x)
A subset of related literature
Approximation theory: Mayer et al. (2015), Pinkus (2015), Diaconis and

Shahshahani (1984), Donoho and Johnstone (1989)

Compressed sensing: Fornasier et al. (2012), Cohen et al. (2012),
Tyagi and Cevher (2014)

Statistical regression: Friedman and Stuetzle (1981), Ichimura (1993),
Hristache et al. (2001), Xia et al. (2002)

Uncertainty quantification & Tipireddy and Ghanem (2014); Lei et al. (2015);
computational science: Stoyanov and Webster (2015); Tripathy, Bilionis,
and Gonzalez (2016); Li, Lin, and Li (2016); ...



Do these structures arise in real models?



Evidence of 1d ridge structures across
science and engineering models
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Hypersonic scramjet models

Constantine, Emory, Larsson, and laccarino (2015)



Evidence of 1d ridge structures across
science and engineering models

Integrated jet nozzle models

Alonso, Eldred, Constantine, Duraisamy, Farhat,
laccarino, and Jakeman (2017)
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Evidence of 1d ridge structures across
science and engineering models

Bare Soil Grass
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Integrated hydrologic models

Jefferson, Gilbert, Constantine, and Maxwell (2015)



Evidence of 1d ridge structures across
science and engineering models
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Evidence of 1d ridge structures across
science and engineering models
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Loudon and Pankavich (2016)



Evidence of 1d ridge structures across
science and engineering models
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Constantine, Zaharatos, and Campanelli (2015)



Evidence of 1d ridge structures across
science and engineering models
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Evidence of 1d ridge structures across
science and engineering models
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Evidence of 1d ridge structures across

science and engineering models
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Evidence of 1d ridge structures across

science and engineering models

Passat: 1D Active Subspace Model
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Othmer, Lukaczyk, Constantine, and Alonso (2016)

Automobile geometries




Evidence of 1d ridge structures across
science and engineering models
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Jupyter notebooks:
X github.com/paulcon/as-data-sets

paulcon /[ as-data-sets @®Unwatch~ 2  Star 1 YFork 2
<> Code Issues 1 Pull requests 0 Wiki Pulse Graphs Settings

Active Subspace Data Sets — Edit

{D 72 commits ¥ 1 branch © O releases 22 2 contributors
Branch: master v New pull request Create new file = Upload files = Find file
3 paulcon committed on GitHub Merge pull request #28 from ryan-kelley-howard/master ... Latest commit da61ac5 10 days ago
= Atacamac Title, author, and reference changes 11 days ago
s Ebola Title, author, and reference changes 11 days ago
B HIv Title, author, and reference changes 11 days ago
8 HyShotll Title, author, and reference changes 11 days ago

= Hydrology Title, author, and reference changes 11 days ago



What about the math?



Ridge approximations

What is the What is U?
approximation error?

f(x) M [glU %)

What is g?

Constantine, Eftekhari, Hokanson, and Ward (2017)



Ridge approximations

f(x) =|g(U" x)
What is g?

Use the conditional average: conditional density

uly) = / f(iy'_ﬁ V;}W(ZJY)IdZ

complement
subspace and
coordinates

subspace coordinates

,LL(UTX) is the best Lo approximation [Pinkus (2015)]

Constantine, Dow, and Wang (2014); Constantine, Eftekhari, Hokanson, and Ward (2017)



Ridge approximations

What is U?

f(x) = g(U] x)

Constantine, Eftekhari, Hokanson, and Ward (2017)



Define the active subspace

The function, its gradient vector, and a given weight function:

f:f(X)a XERma

Vflx) e R™, p:R™ =R,

The average outer product of the gradient and its eigendecomposition,

C = /Vf(x) Vix)T p(x)dx = WAW?!

Some relevant literature
Statistical regression:

Machine learning:

Detection and estimation theory:

Samarov (1993), Hristache et al. (2001)

Mukerjee, Wu, and Xiao (2010); Fukumizu
and Leng (2014)

van Trees (2001)

Constantine, Dow, and Wang (2014)




Define the active subspace

The function, its gradient vector, and a given weight function:
f=f(x), xeR™ Vf(x)eR™, p:R™ >Ry
The average outer product of the gradient and its eigendecomposition:

C = /Vf(x) Vix)T p(x)dx = WAW?!

Eigenvalues measure ridge structure with eigenvectors:

/ by —\/(Wi Vf(x)) p(x)dx,} i=1,...,m

eigenvalue Y

average, squared, directional
derivative along eigenvector

Constantine, Dow, and Wang (2014)



Eigenvalues control the approximation error

Poincaré
constant

average \

Hf(x)—M(WiFX) < C s+ 4+ )

/ | ‘ L?(p) | ]
|
eigenvalues associated with

active inactive subspace
subspace

conditional

Constantine, Dow, and Wang (2014)



Estimate the active subspace
with Monte Carlo

(1) Draw samples: X, ~~ p(X)
(2) Compute: fj — f(Xj) and ij — Vf(xj)

(3) Approximate with Monte Carlo, and compute eigendecomposition

N
]. T 2 ~ /\T
C ~ N;:leijfj = WAW

Equivalent to SVD of samples of the gradient

\/Lﬁ[v]ﬂl o Vin] = WVAV

Called an active subspace method in T. Russi’s 2010 Ph.D. thesis,
Uncertainty Quantification with Experimental Data in Complex System Models

Constantine, Dow, and Wang (2014), Constantine and Gleich (2015, arXiv)



Remember the problem to solve

Low-rank approximation of the collection of gradients:

1 A A /\T
VA - ViN] ~ WAV
— |V fn] 1y AV,

Low-dimensional linear approximation of the gradient:
x span (W1) ~ {Vf(x) : x € supp p(x) }

Approximate a function of many variables by a function
of a few linear combinations of the variables:

f(x) =~ g (WlTX)




How many gradient samples?

bound on
number of gradient
samples | eigenvalue error (w.h.p.)

A

LQ)\l ( A \
N = Q( log(m)) — ’)\k _)\k’ < A\ €

A\ie? T
dimension
bound on
number of gradient
samples \l
L2 ~ 4)\
N =Q log(m) | = dist(W,W;) < =
)\182 T )\n - >\n—|—1
J

|

dimension
subspace error (w.h.p.)

Constantine and Gleich (2015) via Gittens and Tropp (2011), Stewart (1973)



In practice, bootstrap
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Eigenvalue estimates and subspace error
estimates with bootstrap intervals from
quadratic function of 10 variables

Constantine and Gleich (2015, arXiv)



Effect of estimated eigenvectors?

Recall the subspace error:

e = dist(W1,W;)

O(eigval. error)

>\n T >\n—|—1

Eigenvalues for

~_T
x) — W. x H inactive variables
| 16— (W) |, >
<C(eu+ 4 A+ Qg+ 4 An)})
~_
\ Eigenvalues for
active variables

N

Subspace

error

Constantine, Dow, and Wang (2014)



Is the active subspace optimal?

(No.)



An example where it doesn’t work

f(x1,22) = bay + sin(107xs)

14
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Constantine, Eftekhari, Hokanson, and Ward (2017)



Con

Ridge approximations

What is U?

~ g(ﬁX)

best approximation

p

RU) = 5 [ (760 ~[p0 ) plo0) dx

Minimize the error:

minimize R(U)
U

stantine, Eftekhari, Hokanson, and Ward (2017)

subject to U &

G(n,m)

/

Grassmann manifold




The active subspace is nearly stationary

Assume (1) Lipschitz continuous function
(2) Gaussian density function

Lipschitz

gradient on the : :
i constant dimensions
Grassmann manifold |

\ , |
HVR(Wl)HF < L ( m? + (m —n)%) (Ant1 —|—°"—|—)\m)%
\ l

A v

Frobenius norm : : :
eigenvalues associated with
inactive subspace

active subspace

Constantine, Eftekhari, Hokanson, and Ward (2017)



Estimate the optimal subspace
with discrete least squares

(1) Choose points: X, ~ p(X)

(2) Compute: fj = f(Xj)

(3) Minimize the misfit polynomial

N / :
o e . o T .
polynomials — ané%f?ﬂ%lg)e Zl (fJ g(U XJ))
——>» U ceG(n,m) J= \

subspaces
subspace

Constantine, Eftekhari, Hokanson, and Ward (2017), Hokanson and Constantine (2018)



Two contenders for the least squares problem

N
2
minimize - — (U x,
geP,(R"™) Z_:l (f] g( J))
UecG(nm) J7

Variable projection Alternating minimization

Use pseudoinverse of Vandermonde Given subspace, fit polynomial
matrix to express optimal polynomial

coefficients Given polynomial coefficients,

minimize over subspace
Compute the derivative of the

pseudoinverse of the Vandermonde Repeat
matrix [Golub & Pereyra (1973)] on the
Grassmann manifold [Edelman et al. (1998)]

Run Newton on loss function

Constantine, Eftekhari, Hokanson, and Ward (2017), Hokanson and Constantine (2018)



Q-+3

Gauss-Newton

(x) = (e; x)* + (1'x/10)> +1; D=[-1,1]""

Alternating

A

10°
10~2
[N}
== 107*)
:3: —6
T~ 10
n N _8
o ES 10
°D 1071
N & 10712
T 10-14 |
10°
g o
T &=
g <<
~ o _1
o = 10
X
g D
g =
S
102
0 10

Hokanson and Constantine (2018)

20

iteration /¢

30

40 0 10 20 30 40

iteration /¢



v

(aVu)=1, s€D
U = (), S € 111

—n-aVu =0, se&ly

Subspace shadow plot

0.8

Ridge subspace

20 40 60 80 100

Hokanson and Constantine (2018)

Monte Carlo Lo mismatch estimate (normalized)

Input field Solution

- T~

Surrogate error

—_
o
o

linear

Gaussian process

LASSO p3(r100)

10_1 | 1-D ridge |
2-D ridge P7
1-D ridge P’ \
102
102 103 10% 5-10%
samples, M



SUMMARY :: Why | like ridge structure

(1) Exploitable

+ for dimension reduction, not just cheap surrogate

(2) Insights

+ which variables are important

(3) Discoverable / checkable
+ eigenvalues
+ non-residual metrics: E[ Var[ f|U" x]]

+ plots in 1 and 2d



TAKE HOMES

The best way to fight the curse of dimensionality is
to reduce the dimension!

There are many notions of important subspaces;
they arise in several applications

Important subspaces are discoverable and
exploitable for answering science questions



My group is busy!

=T

Jeff Hokanson

lzzy Aquiar
(postdoc) Y9

(MS 2018)

Ridge approximations

Dynamic active
in DUU

subspaces for

: , parameterized ODEs
Lipschitz matrix for

dimension reduction

#jeffneedsajob

Andrew Glaws
Zach Grey
(PhD 2019) (PhD 2018)

Sufficient dimension

Manifold extensions of reduction for CS&E

active subspaces

Shape design Energy applications



QUESTIONS?

Are there other options for important directions?

What is the trade-off between discovering the low-
dimensional structure vs. solving the original problem?

Active Subspaces

Why are these structures so pervasive? SIAM (2015)

What if my model doesn’t fit your setup? Active Subspaces
Emerging Ideas for Dimension

(no gradients, multiple outputs, correlated inputs, ...) Reduction in Parameter Studies

PAUL CONSTANTINE

Assistant Professor

University of Colorado Boulder Paul G. Constantine

activesubspaces.org
@DrPaulynomial



